RSS Feed

 

 

 




 

 

 

 

 

 

 

 Próximos eventos:

- Aula Morán (23.05.24): "El fenómeno del Niño. Impactos en el clima".

 

 

 Últimos eventos:

 

 

Login

Partículas

  • ¿Está contaminada su ciudad? Pregúnteles a los árboles.

    Si vive en una zona urbana o próxima a la ciudad, puede que esté bajo los efectos de la contaminación urbana y que no sea consciente de ello.

    En las áreas urbanas, las actividades industriales y, sobre todo, el transporte emiten a la atmósfera partículas que, entre otros contaminantes, incluyen metales pesados. Alguno de ellos neurotóxicos, como el cadmio, el mercurio o el plomo.

    Estas partículas minúsculas (también conocidas como PM₂.₅) pueden inhalarse con relativa facilidad, ingresando así los metales en el torrente sanguíneo. Existe relación entre la contaminación urbana y algunas enfermedades, principalmente pulmonares y cardiacas. La mala calidad del aire representa un gran riesgo ambiental para la salud: está relacionada con 1 de cada 9 muertes a nivel global.

    La importancia de la (bio)monitorización

    Debido a su impacto en la salud humana, es de gran importancia desarrollar protocolos de monitoreo rápidos y económicos que permitan detectar la presencia y concentración de los diversos contaminantes atmosféricos en áreas urbanas.

    Actualmente, la monitorización de la calidad del aire se lleva a cabo, principalmente, por la información que brindan las estaciones de monitoreo. Sin embargo, el alto coste de dichas infraestructuras condiciona su distribución en las ciudades.

    En este contexto, es necesario promover el uso de nuevas herramientas para monitorizar metales pesados y otros contaminantes. Entre ellas destaca el uso de plantas, un método conocido como biomonitorización.

    Biomonitorizar la contaminación con árboles

    El arbolado está ampliamente distribuido a lo largo de calles y parques de las ciudades. Además, sus hojas actúan como “trampas” perfectas para que se depositen las partículas y los metales suspendidos en el aire.

    Dado su potencial, hicimos un estudio en distintas poblaciones del País Vasco muestreando hojas de un árbol muy común en cualquier ciudad: el tilo.

    Nuestros resultados revelaron que la densidad de tráfico era un factor estrechamente relacionado con la presencia de hierro, aluminio, zinc, titanio, cromo, plomo, vanadio y cadmio en las partículas del aire urbano.

    Además, analizando las hojas de los árboles situados en diferentes puntos de las ciudades, fuimos capaces de caracterizar la huella química derivada del impacto de las posibles fuentes de emisión de contaminantes (tráfico, actividad industrial etc.).

    Covid-19: un giro inesperado

    Estudios recientes llevados a cabo en 66 regiones de España, Francia e Italia y 3 000 localidades de Estados Unidos muestran una correlación entre la exposición de contaminantes ambientales (PM₂.₅ y NO₂) y la tasa de mortalidad de la covid-19.

    Teniendo en cuenta las implicaciones derivadas de las diferentes restricciones en la movilidad acaecidas como consecuencia de la pandemia, estos trabajos constatan que es un escenario clave para determinar el impacto del tráfico de las ciudades sobre la calidad del aire.

    Por ejemplo, varias investigaciones en diversas ciudades han demostrado una mejora general de la calidad del aire debida a los distintos confinamientos. Sin embargo, pocos han analizado su efecto sobre los metales pesados.

    Cambios en la movilidad en España durante el confinamiento. Our World in Data

    Aprovechando la oportunidad

    El confinamiento y la consiguiente disminución del tráfico urbano nos proporcionaron la oportunidad de estudiar de forma real y directa la contribución del tráfico a la contaminación atmosférica en la ciudad. Para ello, analizamos la deposición de contaminantes en las hojas de tilo durante el periodo de confinamiento y la progresiva reanudación del tráfico (de abril a octubre de 2020) en Pamplona y San Sebastián.

    Observamos que la restricción del tráfico rodado fue el principal responsable del descenso en los contenidos de aluminio, cobre, hierro, manganeso, titanio y zinc, mejorando notablemente la calidad del aire. Comparando estos resultados con años previos y rastreando la composición de algunos elementos de los vehículos pudimos identificar distintos patrones.

    Por ejemplo, la alta correlación entre zinc, hierro y cobre durante el año previo al confinamiento (pero no durante el mismo) nos permitió identificar su origen: el desgaste de frenos y neumáticos. De la misma forma, la menor resuspensión del polvo provocada por un menor tráfico se tradujo en un menor contenido de aluminio, hierro, titanio, manganeso y calcio en las hojas.

    De manera resumida, el citado estudio ofrece evidencias directas que indican que la reducción del tráfico urbano contribuye sustancialmente a la reducción de la concentración de contaminantes (óxidos de nitrógeno, monóxido de carbono y metales pesados) en el aire de las ciudades.

    Esta información puede ser usada por las distintas administraciones y la comunidad científica para implementar medidas encaminadas a reducir la contaminación urbana y mejorar así la calidad del aire y la salud pública.

    Ciencia ciudadana

    Durante las últimas décadas, la ciencia ciudadana ha fortalecido la colaboración entre la sociedad y la comunidad científica. Se consigue así aumentar la cultura científica y el conocimiento y sensibilización sobre problemas que nos son cercanos, como la contaminación urbana.

    Esto podría promover un cambio en la actitud y comportamiento individual y colectivo para potenciar la movilidad sostenible, reducir el tráfico en las ciudades y consecuentemente la contaminación del aire que lleva aparejada.

    En este sentido, la organización de talleres de ciencia ciudadana podría ser una herramienta clave en la concienciación de la sociedad sobre las implicaciones que tiene el uso del transporte privado sobre la calidad del aire que respiramos en las ciudades.

    Fuente: David Soba Hidalgo,Investigador Postdoctoral. Agricultura Sostenible y Biomonitorización, Instituto de Agrobiotecnología (IdAB - CSIC - Gobierno de Navarra), Angie Lorena Gamez Guzman,Investigador en Biotecnología , Universidad Pública de Navarra, Iker Aranjuelo Michelena,científico titular. Área de especialización: Caracterización multidisciplinar encaminada al estudio de modelos agrícolas sostenibles, Instituto de Agrobiotecnología (IdAB - CSIC - Gobierno de Navarra), José María Becerril Soto,Catedrático de Fisiología Vegetal, Universidad del País Vasco / Euskal Herriko Unibertsitatea , Raquel Esteban,Profesora de Fisiología Vegetal, Universidad del País Vasco / Euskal Herriko Unibertsitatea

  • El viaje sin fronteras de los contaminantes de un incendio forestal

     

    Los incendios forestales se producen en todo el planeta y afectan a todo tipo de ecosistemas, aunque las regiones con clima mediterráneo se encuentran entre las más afectadas y son consideradas áreas de alta probabilidad de ocurrencia de incendios. Sus inviernos húmedos y templados facilitan el crecimiento de la vegetación (combustible) y los veranos cálidos y secos disminuyen la humedad del combustible hasta niveles que facilitan la ignición.

    Además, las condiciones meteorológicas influyen en el inicio, desarrollo y severidad de un incendio. Con altas temperaturas, baja humedad relativa y fuerte viento, la extinción puede ser muy complicada y dar paso a un gran incendio (de más de 500 hectáreas).

    En España, en las últimas décadas, el número de incendios y la superficie quemada tiende a disminuir, pero el número de grandes incendios va aumentando. En 2019 solo fueron el 0,13 % del total de incendios, pero supusieron el 34 % de la superficie total quemada.

    Incendios más frecuentes y severos

    En los últimos años, zonas como el Ártico o Europa central, en las que no son frecuentes los incendios, se han visto afectadas por grandes incendios. En otras, como California, Portugal, Grecia o Chile, la severidad y frecuencia de estos ha sido mayor y han afectado a la población, produciendo muertes y cuantiosos daños materiales.

    Estos cambios se han atribuido a efectos del cambio climático y las previsiones indican que los periodos de alto riesgo de incendios serán más largos y los eventos extremos (olas de calor) más frecuentes. En estos escenarios la probabilidad de grandes incendios forestales que afecten a la población también será mayor.

    Una de las afecciones a la población que se puede producir por un incendio forestal tiene que ver con la alteración de la calidad del aire, ya que se emiten gases y material particulado (PM, por sus siglas en inglés). La naturaleza y cantidad de los contaminantes emitidos vendrá condicionada por las características de la vegetación, las condiciones meteorológicas y la duración del incendio.

    Entre los principales contaminantes gaseosos liberados a la atmósfera destacan el monóxido de carbono (CO), el metano (CH₄), los compuestos orgánicos volátiles (COV, como benceno y tolueno), el óxido nitroso (N₂O) y los óxidos de nitrógeno (NOx), el óxido nítrico (NO) y el dióxido de nitrógeno (NO₂) y el material particulado. Este se clasifica en partículas gruesas (PM₁₀) y finas (PM₂,₅ y PM₁), es decir, partículas de diámetro inferior a 10, 2,5 y 1 μm, respectivamente. También se forma ozono (O₃) al reaccionar contaminantes liberados en el incendio (COV y NOx) en presencia de la luz solar.

    Las dos caras del ozono

    El O₃ que se concentra entre 8 y 15 km sobre el suelo (estratosfera) recibe el sobrenombre de ozono “bueno”, porque desempeña un papel vital en la absorción de los rayos ultravioleta que son dañinos para los seres vivos.

    Sin embargo, al O₃ a nivel del suelo (troposfera) se le ha denominado como ozono malo porque es una sustancia altamente oxidante que ocasiona daños a las personas, a los animales y a las plantas. En los humanos, estos daños van desde el deterioro de la capacidad pulmonar, hasta alteraciones del sistema inmunológico. Además, el O₃ troposférico tiene un alto potencial de oxidación y reacciona fácilmente con muchos compuestos, formando otras moléculas igual o más dañinas.

    ¿Qué incendios hemos usado de ejemplo?

    El verano de 2012 comenzó con dos grandes incendios, de entre los más devastadores del siglo en España, y en los que ardieron alrededor de 50 000 hectáreas. El primero de ellos se inició el 28 de junio en el término municipal de Cortes de Pallás y el segundo, al día siguiente, en el municipio de Andilla-Alcublas, ambos en la Comunidad Valenciana. En cuatro días ardió el 9 % de la superficie forestal de Valencia.

     

    Figura 1. Imagen del fuego a mediodía del viernes 29 de junio de 2012 tomada por el satélite Terra, de la NASA, y difundida por L'Oratge, de la desaparecida cadena pública valenciana.

     

    La columna de humo se pudo ver desde el espacio, como se puede apreciar en la imagen (figura 1) del satélite Terra de la NASA, llegando a las islas Baleares.

    Los contaminantes recorrieron una gran distancia, influenciados por la cantidad de la vegetación quemada, las características del paisaje y, por supuesto, las condiciones meteorológicas.

    Ambos incendios se desarrollaron bajo condiciones meteorológicas propias de una ola de calor: temperaturas cercanas a 40℃, vientos sostenidos de poniente de más de 20 km/h, con rachas de 50 km/h y humedades relativas inferiores al 30 % durante la noche e inferiores al 20 % durante el día.

    Siguiendo la pista a los contaminantes

    Existe una red de vigilancia de la calidad del aire que monitoriza algunos contaminantes comunes del aire, además de algunos parámetros meteorológicos. Esta red cuenta con estaciones automáticas, localizadas por todo el territorio nacional, que llevan a cabo el análisis del aire en tiempo real. Permite conocer las emisiones y saber si la calidad del aire es buena o mala.

     

     
    Niveles del Índice Nacional de Calidad del Aire, medidos por la red de estaciones de monitorización de la calidad del aire. Gobierno para la Transición Ecológica y el Reto Demográfico

    En la figura 3 se muestran las concentraciones promedio diarias de los contaminantes medidos en dos estaciones de Valencia y otra estación de Palma de Mallorca, desde el 22 de junio (mucho antes de comenzar el incendio) hasta el 3 de julio de 2012.

     
     
    Figura 3. Concentraciones promedio diarias de los contaminantes seguidos en la estación de Forners (Palma de Mallorca) (arriba) y las estaciones de Avenida Francia y Molí del Sol (Valencia) (abajo). Author provided

    Podemos ver cómo se incrementaron las concentraciones para todos los tamaños de partículas medidos por las estaciones, tanto en Valencia como en Palma de Mallorca.

    Desde el 28 de junio hasta, al menos, el día 1 de julio, las PM₁₀ llegaron a alcanzar concentraciones promedio diarias de 73 μg/m³ (50 µg/m³ es el valor límite horario permitido) y las partículas finas, PM₁ y PM₂,₅, alcanzaron concentraciones de hasta 55 y 71 μg/m³, respectivamente (25 μg/m³ era el valor límite anual hasta 2020, después se bajó a 20 μg/m³).

    En Palma de Mallorca se registraron concentraciones de 73 μg/m³ para PM₁₀ y 32 μg/m³ para PM₂,₅. Además, se observó un incremento de la concentración de O₃ (97,8 μg/m³) y CO (0,6 mg/m³), e incluso, de los COV benceno y tolueno (alcanzando valores de 1,9 y 0,4  μg/m³, respectivamente). Aunque hay que decir que no se superaron los valores límites de estos últimos contaminantes.

    ¿Qué debemos hacer?

    Poco se conoce sobre los efectos que las emisiones de gases y partículas producidas durante un incendio en entornos mediterráneos tienen en la población. Se sabe que pueden viajar a grandes distancias y altitudes y detectarse tanto en zonas cercanas como lejanas al incendio.

    Dado el incremento en el número de grandes incendios forestales, su severidad y frecuencia y la cantidad de población afectada, sería de gran interés realizar el seguimiento de las emisiones con repercusión en la calidad del aire y, por tanto, en la población.

     

    Artículo publicado en The Conversation el 29 de julio de 2021 por  Diana Rodríguez Rodríguez y Beatriz Pérez Ramos. Enlace al original: https://bit.ly/2VnS6GY

     

    Cláusula de Divulgación

    Las personas firmantes no son asalariadas, ni consultoras, ni poseen acciones, ni reciben financiación de ninguna compañía u organización que pueda obtener beneficio de este artículo, y han declarado carecer de vínculos relevantes más allá del cargo académico citado anteriormente.

    Nuestros socios

    Universidad de Castilla-La Mancha aporta financiación como institución colaboradora de The Conversation ES.

    Ver todos los asociados